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Temperature Overshoots for a 4-Velocity
Unidimensional Discrete Boltzmann Model
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We propose a 4-velocity unidimensional discrete Boltzmann model with two dif-
ferent speeds 2, 1 and two different masses 1, 2. With the three conservation laws
of mass, momentum, and energy satisfied, we can introduce a nontrivial tem-
perature. First, we determine the similarity shock waves satisfying physical
properties: positivity, shock stability, inequalities of the subsonic and supersonic
flows, increase or decrease of both mass and temperature across the shock. It
results that either the speed of the shock front is higher than the speed 1 of the
slow particles and the shocks are compressive or less than 1 and the shocks are
rarefactive. We observe overshoots of the temperature, across the shock, with
bumps higher and higher as the shock front speed increases. Second, we study
the (1+ 1)-dimensional shock waves. They represent the superposition and
collision of two compressive shocks traveling in opposite directions and we
observe temperature overshoots for not too large times.

KEY WORDS: Discrete Boltzmann models; shockwave solutions.

1. INTRODUCTION

For the discrete-velocity Boltzmann models'" along an axis 0x, the velocity
V takes only a finite number of discrete values V,;:i=1,.., p. To each
velocity V, is associated a density N, satisfying a nonlinear equation, so a
system of p nonlinear equations for a model with p velocities. In order to
be physically relevant, these models must satisfy the three linear conserva-
tion laws of mass .#(x, t), momentum #(x, t), and energy &(x, ¢). These

! Service de Physique Théorique de Saclay, Laboratoire de 'Institut de Recherche Fondamen-
tale du Commissariat a ’Energie Atomique, 91191 Gig-sur-Yvette Cedex, France.
2 Laboratoire de Physique Statistique, ENS, Paris, France.

683

822/61/3-4-12 0022-4715/90/1100-0683806.00/0 © 1990 Plenum Publishing Corporation



684 Cornille and Qian

macroscopic quantities are linear combinations of the microscopic densities
N;(x, t). So the corresponding linear combination of the nonlinear N, equa-
tions must reproduce the three linear conservation laws. Consequently,
a nonlinear unidimensional Boltzmann model must contain at least four
discrete velocities (p =4).

In fact, the current unidimensional models® violate the momentum
conservation law. In general they are two-velocity discrete models with
V,+ V,=0 and only one speed |V,| =|V,| =1. For these models, since the
mass .4/ =Y N, and the energy & = N,V?/2 are proportional, the tem-
perature Je(x, t)=2&/M —U>, U= g/ M, cannot be distinguished from
the velocity % (x, t). For the temperature this is a general drawback of all
the discrete models (unidimensional, planar, three-dimensional) with only
one speed |V,| = 1.

For the two-velocity discrete models, the known® shock wave solu-
tions are the similarity waves, but no (1+ 1)-dimensional solutions are
known (except for the completely soluble Ruijgrook—Wu model). For these
models, the temperature cannot be defined. Here our goal is to introduce
and study the temperature.

We propose a 4-velocity unidimensional model with two speeds and
two different masses for the particles. Both the H-theorem and the three
independent conservation laws are satisfied (which allows one to define a
temperature). For this model, with two couples of opposite velocities,
V,+V,=V,+V,=0, V, and V; along the positive x axis, we have two
speeds |V,| and two different masses for the particles: |V,| =2, m;=1 for
i=1,2and |V,]=1, m;=2for i=3, 4 The associated microscopic densities
satisfy a system of nonlinear equations which include, by linear combina-
tion, the three linear conservation laws for the macroscopic quantities .#,
I, U, &, Te,

LN, =,N,= —I,N,= —3N;=N,N;— N, N,
[,=0,+a,0,, a, = —a,=2, a;= —a,=1
M=N;+N,+2N;+2N,
F=2(N — N+ N;—Ny)
&=2N;+2N,+ N;+ N,

(L.1)

M+ F=0  F+26,=0, &+32,=0, 2=4N,—4N,+N;—N,

3 See ref. 3 for the two-velocity models; see ref. 4 for a recent review.
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We notice that a lattice gas model® similar to the present discrete
model (1.1) has been recently studied. A discrete model of the (1.1) type for
a gas mixture with two different species and two different sets of macro-
scopic quantities was also previously studied® for the possible existence of
entropy overshoots'” in shocks. Here, in (1.1), we study the macroscopic
quantities of the whole gas, a sum of the two different species; a
preliminary note was presented.® Finally, we notice also that temperature
overshoots have been observed for two discrete models with temperature:
8V, and two speeds,® and 9V, and three speeds, which were previously
studied as lattice gas models.”®

In Section 2 we study the exponential-type similarity shock waves:

N;=ny+n,/D, D=1+¢", n=x-—_t (1.2)

Since the pioneering work of Broadwell,'®’ it has been recognized that the
most interesting physical application of the discrete kinetic theory is the
study of the shock waves. Here, in addition to the previous
studies, ***1%! we introduce the temperature. The first physical constraint
for the physical relevance of the shock wave solutions is the positivity of the
densities. Consequently, we prove that the speed |&| of the shock front can-
not exceed the value 2 of the speed of the fast particles. For the physically
acceptable classes of positive solutions we show that distinctions occur
between [&| less or higher than the speed 1 of the slow particles and
between ¢ >0 and £ < 0. If we define the two Maxwellian states Ma,, Ma,
by the two sets ngy; and so; = ng; + 1;, we find that the four possible ¢ inter-
vals are limited by the velocities +1, 42 of the slow and fast particles and
by the parameters of the two Maxwellian states. The second physical con-
straint concerns the stability of the upstream and downstream Maxwellian
states and the determination of the direction of the shock. We introduce
the characteristic values &,, £, for a weak shock, and determine both the
shock velocities %, — ¢ and %, — ¢ (%, and %, are the velocities of the
Maxwellian states) and the sound speeds %,— &, and %,—¢,. We prove
that the inequalities for subsonic and supersonic flows are satisfied. The
result is that for |£] higher than the slow particles of speed I, only com-
pressive shock can occur (mass increasing across the shock), while for
I£] <1 we find both compressive and rarefactive shocks (mass decreasing
across the shock). As a third physical requirement we introduce the tem-
perature and ask that both the mass and the temperature either increase
together (compressive shock) or decrease together (rarefactive shock). As
a consequence only the compressive shocks remain for || > 1 and rarefac-
tive shocks for 2/\/5 < |&€] < 1. All these results, analytically proved, require
a lot of tedious calculations, which are provided in Appendix A. Finally, we
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study the possibility of temperature overshoots in the interior of the shock
waves. The mass, momentum, etc., are monotonic # functions between the
two Maxwellian states; on the contrary, the temperature, which is the dif-
ference between the two monontonic n-functions 2&/.# and %2, is not
necessarily monotonic. A simple criterion for such an effect is that the tem-
perature inside the shock front at n =0 is higher than its values at the two
Maxwellian states. We observe such overshoots and see that they become
more pronounced when the shock front speed |£| increases. We also
observe overshoots of the local entropy.”

In Section 3 and Appendix B we study the (1 + 1)-dimensional shock
waves which are sums of two similarity shock waves:

2
N,=ng+ Y, nu/D,, D,=1+de", n,=x—¢t (1.3)
j=1

We find that the shock front velocities ¢; of the two components are
opposite and that their speed || is higher than the speed 1 of the slow
particles. The physical interpretation is that the (1 + 1)-dimensional solu-
tions represent the superposition and the collision of two compressive
shocks traveling in opposite directions. We still see temperature overshoots
for not too large times. Contrary to the similarity shock waves, the shock
profiles are modified when the time is growing and a relaxation toward a
third Maxwellian equilibrium state is observed in addition to the two
Maxwellian shock states. These features are the same for both the mass and
the temperature.

2. SIMILARITY SHOCK WAVES

In Appendix A we first recall the known result’® for the possible
exponential-type similarity waves, leading to similarity solutions

N;=ny;+n;/D, D=1+4de", n=x—-¢t (2.1)

of the nonlinear equations (1.1) satisfied by our 4V, model. We build up
the macroscopic quantities associated with the densities (2.1): mass
M =My+ M/D, momentum ¢ =J,+J/D, energy & = E,+ E/D, velocity
U= g|M, shock velocity ¥ =AU — &, temperature Je=28/.4 —U°, and
sound velocity #". All details are provided in Appendix A and we briefly
report the main results.

First, we construct four classes of positive densities. They are charac-
terized by the speed [£] of the shock front being less or higher than 1 and
by the sign of £. We prove that || cannot exceed the speed 2 of the fast
particles. ¢ belongs to four intervals with limits given by +1 and +2 and
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by the parameters of the two Maxwellian states Ma, and Ma, defined,
respectively, by ny; and sy, = ngy; + n,.

Second, we introduce the characteristic &,, £, values for the weak
shocks associated with Ma, and Ma, and show that both &, &, and ¢, &,
belong to the above four intervals. However, only three characteristic
values belong to three of these four intervals.

Third, we study the velocities U,, U,, the shock velocities V= U, —¢,
V.=U,—¢, and the sound wave velocities Wo=Uy,—¢&,, W,=U,—¢,
associated with the Maxwellians. From the signs of both the shock velocity
and y we find when |n| > oo which Maxwellian is in the upstream or
downstream domains. For the classes 1< |&| <2, with shock front speed
higher than the speed of the slow particles, we find that only compressive
shock (mass increasing across the shock) can occur. On the contrary, for
0 <|€| <1 with shock front speed less than the fast particles both com-
pressive and rarefactive (mass decreasing across the shock) shocks exist.

Fourth, another distinction between the possible classes of shocks
arises, depending upon whether the mass M|, of the Ma, is higher or less
than the mass M = M, + M of the other Ma,. In principle, for this simple
model we could have 12 subclasses of solutions. Fortunately, invariance
properties allow us to study only three subclasses. For the stability of the
Maxwellian states we verify that the subsonic and supersonic flow
inequalities are satisfied.

Fifth we introduce the temperature and require that for compressive or
rarefactive shocks, both mass and temperature increase or decrease
together between the two Maxwellian states. We study the possibility of an
overshoot of the temperature across the shock and we define a criterion for
this effect.

Finally, as an illustration we present some numerical calculations.

2.1. Algebraic Construction of the Solutions

The ten parameters n,;, n;, 7y, & satisfy six relations, leaving four
arbitrary parameters
E ne>0, i=1,2,3 (2.2)
Always one parameter is a scaling one, so that we could, for instance,
put ny, =1. For the construction of the nonarbitrary parameters it is
convenient to introduce ¢-dependent intermediate parameters 7i,=n,/n,,
?=y/n1,
i =Q2-8/2+8), a=Q2-/(E-1), A=(E-2)/(¢+1)
F=28/2+ &) 1) (2.3)
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while n, depends on the four arbitrary parameters
ny(2— &) 7 =nos+ noy Ay — o fiz — N3 iy, Moy = Ho3Mga /Mg >0 (2.4)

With (2.3)-(2.4) we construct the original n,=7,n,, y =yn,. Finally, the n,,
satisfy the Maxwellian relation for Ma,, while for Ma, we deduce
504501 = 02803 With o, =no; + 71,

2.2. Invariance Properties under the Transforms 7, and 7,

The relations satisfied by the parameters are invariant under the trans-
forms

9'1: é'—')‘ia Yy =7 Ry n;y, No >Ry, i=1and 3 (25)

For instance, we can study the solutions with ¢ >0 and deduce the ¢ <0
ones. Under this transform we find for the microscopic densities
Ni(x,t)> N; (—x,1), i=1 and 3, while for the macroscopic .#, ¢, &,
Je, %, which are functions of x, f, we obtain #(—x,¢), — #(—x, 1),
E(—x,1), TJe(—x, 1), —¥(—x,t). A second transform 7, interchanges the
Maxwellians Ma, and Ma,,

Iyt Mg > Sg, Mo s;=—n, o =y, £ (2.6)

We obtain SN, =N; and 3 My=M,=M,+ M. For a solution with ¢
fixed but M,<s M, we can obtain the other one with M2 M,.

2.3. Classes of Positive Densities ;>0 or ny,>0, 54,>0

From (2.2), all ny; are positive. For the sy [see (A.7)] we always
obtain the same analytic structure

oo = 1'i(8) [no2 — oy, (E) [ 1o3 — 1oy B:(E) ]

so that we check the signs of I';, «;, ;. We find for ng,/ng,, nys/ng; lower
and upper &-dependent bounds leading to 5o, >0 and N, > 0. Positivity is
violated for |&| > 2, which means that the shock front cannot travel faster
than the fast particles with speed 2. For positive £ <2 we find two classes
of positive densities (A.8a),

Class I 1<&<2, ng>fyng, N> Hshg (2.7a)

Ciass III 0< i<, Aufn,<ng/ng <h, (2.8a)
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while applying the transform 7, we deduce the two other classes:

Class II =2<é< =1, ngp<fyhg, Ney>Ngiufi,
Class IV —1<&<0, 7y <ng/ng <nung

Equivalently we can write the positivity constraints on the {ront shock
velocity ¢ in terms of the parameters #ny,, S, of the two Maxwellians Ma,
and Ma, [see (A.8b)-(A.8¢c)]. We define a(ny)=1+ny /(g + #g3) > 1,
b(ng;) = (ng; — Rey )/ (o + Roz), and a(sy;) > 1, b(sy,;) with sy, instead of #n,,:

Class I sup(a(ny,), 2b(ny)) < &< 2 (2.7b)
sup(a(sy;), 2b(sg;)) <& <2 (2.7¢)
Class 11T Aoy <Hgy, 0<b(ng) < &<inf(l, 2b(ny;)) (2.8b)
Son < So1, 0<b(sy) <& <inf(1, 26(se,)) (2.8¢)

The two other classes 1T and IV for £ <0 are respectively obtained by
application of the transform 7, to the classes I and III. We notice that for
a Maxwellian given (either the set n,; or the set sq,;), only three intervals for
£ are possible: one for class I, another for class II, and the third one either
for class III or 1V, depending upon whether ny, Sy, S¢; S Soz.

2.4, Characteristic Velocities for Weak Shocks

Let us call &, and &, the ¢ values for weak shocks associated, respec-
tively, with Ma, and Ma,. We begin with &, for which n,(&,)=0 for all
i values, and define #,(¢, n,;):

288 -2)ny=n; = (1~ 52)(no4+”01ﬁ4””02’73_”03’72)(2‘*' ¢) (29)
Ay = (1= &) [na(2+ &) = ngs (2~ €)] ‘
+(4— 62)[’102(1 + &) —no(1-4)]

7i1(£o) = 0 are the three roots of a cubic polynomial. What is important and
proved in Appendix A is that ¢ and &, belong to the same interval, either
the one of class I defined in (2.7b) or the corresponding one of class II [see
(A.8b)], and, finally, the one defined in (2.8b) for class III if ny, <ny, or
the corresponding one of classIV if sy, <ng,. We go on with the
Maxwellian Ma,; define §,(¢&, sq;)

§1(8) = (24 &)1 — E2) (S04 + So1 74 — Sop i3 — Se3fiy) = —Fiy (&) (2.10)

and £ are the three roots §,(£,)=0 of the cubic §,(¢) polynomial. Here
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also &, £, belong to three similar intervals: (2.7¢c) and the corresponding
one for class IT and either (2.8¢c) for class III if sy, < 5o, or the correspond-
ing one for class IV if 54, < $q,.

2.5. Velocity, Shock Velocity, and Sound Velocity

To the mass # =M,+ M/D, momentum ¢ =.J,+.J/D, velocity
U= ¢/ M, and shock velocity ¥ =% — & we associate (D — oo or 1) the
corresponding quantities for the two Maxwellian states:

May: My, Jo, Ug=Jo/Mg, Vo=Uy—¢
Mag;: M=My+M,J,=Jy+J,Uy=M/J,V,=U,—-¢
They are linked by the mass conservation law
MV, =MVy—>VoV,>0 and [VolZiV, if MysM, (211)

and V,, V, have the same sign. Depending upon whether yp - +o0 or
— o0, the Maxwellian states are either Ma, or Ma,, so that the y sign gives
the information for the |#| — co states. Further, the V, (or V) sign gives
the direction of the shock. With this knowledge we can define the upstream
and downstream states

VoMo =2(nps/no )&+ 1) (o1 la/fis — Ran) + (2 + E) Az ngs — Ron), ME =06y
(2.12)

First, for class I with > 1 and ny, > 71, > n1,/n; we find both My >0 and
V4 <0. Depending upon whether M, — M =M 20, we have y20, and
Ma,, Ma, are the shock limits when # — +00. We obtain two subclasses:

Class TA M>0, y>0, —Vy>—-V,>0; upn=o0 Ma,,

down n= —o0 Ma,
(2.7d)
Class IB M<0, y<0, —V,>—-Vy;>0; upy=o Ma,,
down#n = —co Ma,

and notice that class IB can be obtained from class IA by the transform 7,
which interchanges the two Maxwellian states. In both subclasses the shock
is compressive because the mass increases across the shock (mass
downstream larger than mass upstream).

Second, for class II with —2 < ¢ < —1 we have My <0 and, applying
the transform 7, we find V>0, V,>0. We still have two subclasses A
and B corresponding to M 20, and applying Z; to (2.7d), we verify that
the shock is still compressive.
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Third, for class III with 0 <& <1 we still have M¢ >0 with two sub-
classes M 20, but the discussion about the ¥, sign is more complicated. V,
does not have a well-defined sign in (2.12), and defining 75, we find

ClaSS III ﬁg—_— [(2‘—6)”01 - (2+ é) n()z:l/z[(l +5) Hoy — (1 - é) nOl]

- V,20 if ny Z27;ng

For M fixed with M,2 M, and two possible directions of the shock,
necessarily one shock is compressive while the other is rarefactive (mass
decreasing across the shock). In Section A.8 we present the two sub-
classes IIIA, V20, and IIIB, V, 20, where we have

Class II1B M<0, y<0, np=o00 Ma,, n=—o00 Ma,,
M, <My, Vy<0

if mgs>fsny, up Ma,, down Ma,, compressive shock; V,>0 if
Ro3 < Fislgy, up Ma,, down Ma, rarefactive shock.

The four subclasses IV, M 20, V,20, with rarefactive and com-
pressive shocks are obtained by applying Z; to the subclasses ITI. At this
stage of our study there exists a great difference between the shocks
propagating with speeds greater or less than the slow particle speed. In the
first case, only compressive shocks can occur, while in the second case,
both compressive and rarefactive shocks are possible.

Among the 12 subclasses, applying the transforms Z; and Z,, only
three of them (one of class I and two of class IIT) generate all the others.
For the stability of the solutions in the upstream and downstream domains
(Lax—Whitham stability theory,'") Gatignol*"'") it is sufficient to check
the inequalities of the subsonic and supersonic flows.

We define the sound velocity W,=U,-¢&¢, W.,=U=U,—¢&,
associated to the Maxwellians Ma,, Ma, and compare with the shock
velocity Vo=U,—¢&, V,=U,—¢&. For a supersonic flow we must have
[Vol > Wyl or |V >|W,|, while for a subsonic flow |V, <|W, or
[V,|<|W,. In Lemmas 1-3 of Appendix A, for the three generating
subclasses class I1, class IIIB, V20, we prove that the supersonic and
subsonic inequalities are satisfied.

2.6. Energy and Temperature

For these models with two speeds, mass and energy conservation laws
are different, so that we can introduce nontrivial energy and temperature
macroscopic quantities. New physical constraints will occur for our pre-
vious classes of shock solutions. For a compressive shock we will require
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that both mass and temperature increase across the shock (Their product,
which is the pressure, will increase, too.) Similarly, we will require that they
both decrease for a rarefactive shock and the pressure will decrease. We
shall see that this physical condition cannot be satisfied for the compressive
shocks of classes III and 1V, for which |£} < 1.

We introduce the energy & = E,+ E/D with 2EM = J? [mass conser-
vation law (A.15)] and the temperature Je =26&/.4 — U *:

Fe=(Ny+ N/D)/(Mo+ M/DY’ (2.13)

Ny=2E,My—J2>0, N =2MC, C=Eq—&lo+EMy2>0

To the Maxwellians Ma, and Ma, we associate the temperatures 7%, and
Fe,:

Teo= N/ M2, Te,=(Ny+ N )/M> (2.14)

sign Jeo— Je,= M[m+2(1—1/u)],  p=M,C/4>0, m=M/M,

and m has the M sign. We require that .# and Je increase or decrease
together across the shock,

Moz M, Jeg2Te, or m+2(1—1/u)20 if M=20

In Appendix A we check this property for the solutions of class III for
which 0 < ¢ < 1. In Lemma 4 it is shown that this property is not possible
for compressive shock. In Lemma 5 the same result holds for the rarefactive
shocks if £ < 2/\/5 =(.89. An application of the transform 7, will give the
same results for class IV. Consequently, in the following, we only consider
compressive shock solutions of classes [ and II with 1 < |£| <2 and rarefac-
tive shocks of classes III and IV with 2/\/5 <|¢| < 1.

2.7. Overshoot of the Temperature

Let us neglect the velocity % in the temperature Je ~ 2&/.4. Then it
is shown in Appendix A that Je becomes a monotonic #-dependent func-
tion like the mass .#(n) and the energy &(y). Adding —%?, we find that
the whole temperature is not necessarily monotonic across the shock. We
look at the possibility of an overshoot of Ze. A simple criterion for such an
effect is

Te(n =0)= (N + A;/2)/(Mo + M/2)* > sup{ Te,, Te,}
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Still assuming that mass and temperature increase or decrease together
between the two Maxwellian states, we find that the criterion becomes

Class A M=>0: Je,<TJe,< Te(0)

Class B M<0: Je, < Te,< Je(0)

sign Je(0) — Je, = M(—m/4— 1+ 1/p)
sign Je(0) — Je, = M[3m/4 + 1+ (m*/2—1)/u]

For instance, for class B we obtain the two conditions, with yu defined in
(2.13)-(2.14),

Class B M<0: 2<(—M/My)u/(u—1)<4, u>1

which depend on ¢ and on the macroscopic quantities M, J,, E, of Ma,.
Recalling M = M — M ,, we see that the condition for the effect depends on
the Maxwellian states and on the shock front speed. A similar condition for
class A is written down in (A.25).

2.8. Entropies (Appendix A.9)

The shock functional #A(n)=X>(—¢+a;)N;logN,, a,= —a,=2,
a;= —a,=1, is decreasing continuously between the two states |y|=
—0o0, +o0. On the contrary, the local entropy —#(n)= —3 N,log N, is
not necessarily monotonic and can have overshoot or dip across the shock.

2.9. Numerical Calculations (Fig. 1)

We present, for two n,, values, the shock profiles both for compressive
shocks with |¢] > 1 and for one rarefactive shock with ¢ <1 (Fig. 1d). We
quote .#, Je, and —#, as functions of 5’ =nn,y, normalized to their
highest value (M,, Te,, —H,) either at the downstream state for com-
pressive shocks or at the upstream state for the rarefactive shock. The
supersonic and subsonic inequalities are satisfied and the values as || -
of the pressure M,Te,, M Te, increase for compressive shocks and
decrease for the rarefactive one. We require an increase of the local entropy
between the two limits, or —H,, < —H . In Fig. 1 the quoted numbers
are for ng, =1, but for Ma, we have My/ny,, &y, Vo, W,, which are ng,
independent, while H, is ny, dependent (the same for Ma,). Consequently,
M"Y M,, Te(n')/Te, are ny, independent, but #(y')/H, is not.

For the compressive shocks we observe that the temperature over-
shoot increases with |£| and we present the bumps for £=1.97, 1.7, 1.5. On
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(a) Class 1B M<0 E=197 y=-0.34
Ngp=1 Ngp=0.017  ng3=0.03

Tein)/Te,

Downstream Ma, Upstream Ma,

M, =108 =0.03
&, =1998 E, =148
v, =-0.09 -3.26
W, =-0,123 . =-278
Te,=031 Te .= 0.28
-H,=0.18 -H,=0.09

(b) (lass IB M<0 E=17 y=-0.48
Ngi=l  Ngp=0.08  npy=0.45

Downstream Ma, Upstream Ma,
M,=2 £,=193 i M=034 =1
Ve=-0.4 W =-063 Ve=-24  W=-17
Te,=09 -H,=0.68 Te,=0.46  -H.=037

~
-

-10 0 10 18



4-Velocity Unidimensional Discrete Boltzmann Model 695

(C) "[lass I B M<0 §=1S no1=1 n°2=.1 53 00321 “:-068
Downstream Ma, Upstream Ma
A~
Mo=3.46  Eg=181 /‘ +2 \;?”(n‘)/Ho M= 071 =103
-wp=0.83 > -v(=0.52 . ‘ -vg=-251 > -w;=0.05
/ :
wo Yo . ny =l
A — / \OQ ¥s ws‘
Tep= 1.04 2 X k
Ho =057 - N Teg= 0.015
—er '~ H =-0415
ERENN ’
NS ~.
N —
NA )/ M Zeln)/ Tey —
N~
\\E\ 0.1
L | i 4 1
-10 -5 0 5 10
(d) OassITB  M<0 E=099 ng=1 ngp=5.0070  npy=195  y=-0.64

Downstream Ma,

18 M=103  §,=0.977
w =0.9717 > v,=0.9593

Vs Wy

Upstream Ma,

Me=5.92 E,=0.995
ve=02 > wy=0.196

Wo Vo
P
Teg=0.191 Hg=1.23 WL

— _'\\,Q\
NN Tat()/ Te,

1 & ]
A/ Hy \, \\«/\(q)ﬁo ey

Te,=0.182 H,=-0.05

Fig. 1. Similarity shock wave functions of 5’ =#ng,. Here Mo/ng, M, fng,, &, &, Vo, Vi,
Wo, Wi, Tey, Te,, M(y')/ My, and Je(n')/Te, are ny, independent, while Hy, H,, #(y’')/H,
are ny, dependent. The quoted ny,, ng;, My, Hy, M,, and H, values are for ny, = 1. (a—c)
Compressive shocks for £ =(a) 1.97, (b) 1.7, (¢) 1.5; and 1y, =1 and 0.1. Overshoots of Fe(n’)
always exist, while overshoots of #(n’) present for ny, =1 disappear for smaller values, for
instance, ny; =0.1. For ng; =0.1 and £=1.97, 1.7, and 1.5 the H, values are, respectively,
~0.26, —0.43, and —0.59 and the H, values —0.014, —0.077, and —0.125. (d) Rarefractive
shock, £=0.99. A temperature overshoot exist, while for the local entropy a dip present at
ng; =1 disappears for large n,, values, for instance, ny, = 50, for whic Hy =641, H = 200.
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the contrary, for —# the overshoot present for ny, = 1 has disappeared for
no; =0.1. For the rarefactive shocks of class III-IV with |{£] <1 we have
numerically found that the joint decrease, between the Maxwellian states,
of # and Je begins for |£| ~0.99, showing that our theoretical evalua-
tion result |¢| >2/\/§ is good enough. The temperature overshoot is less
important than in the previous pictures with |£| > 1, and in the example of
Fig. 1d, £ =0.99, while for — 5 the dip present for ny, = 1 has disappeared
for ngy = 80.

In conclusion, for the compressive shocks, which are the standard
physical shocks, the overshoot of the temperature effect becomes more and
more important when the shock travels with its highest possible physical
value.

3. (1+1)-DIMENSIONAL SHOCK WAVES

The exact (1 + 1)-dimensional solutions are the sums of two similarity

waves 412
2

N,=ny+) n,/D,, D;=1+d;e"m, n,=x—¢&t (3.1}
1

If the two components are complex conjugate, the solutions are
periodic®#1213) and such solutions exist for the present model.®® Here we
are interested in the temperature properties of shock waves and the two
components are real. The two components j=1 and 2 must satisfy the
similarity relations studied in Section 1. In addition, the sum must also be
a solution and this gives another constraint [vanishing of the coefficient of
(D,D,) ! in the collision terms]:

MipNas+ N3l =Ry oy + Higly (3.2)

For the similarity solutions of Section 2 we have, in fact, only one variable
n =x— ¢t with two Maxwellian states when |f| — co. On the contrary, for
the (1 + 1)-dimensional solutions we really have two independent variables
x and ¢, so that in addition to the two Maxwellian shock limits |x| — oo,
the equilibrium Maxwellian state exists when ¢— co. The associated
physics is different. At initial time, or small time, we only observe the shock
profile with two shock limits, but when the time is sufficiently large, the
Maxwellian equilibrium state appears, which spreads out. The two
similarity components j=1,2 of (3.1) will be chosen as corresponding,
respectively, to the two compressive shock classes I and II. The (1 + 1)-
dimensional sum solution will represent the superposition or collision of
two shock waves traveling in opposite direction with a relaxation toward
equilibrium. All details are given in Appendix B.
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3.1. Algebraic Construction of the Solutions

The 16 parameters n,;, #;, y;, &; satisfy the 11 similarity relations of
the two components j=2, 2 plus another relation written down in (3.2).
As in Section 2, we introduce &;-dependent intermediate parameters
Ay=nu/n;, 7;=7,/n;, deduce n;,

Ap=Q2—=C)2+8),  Az=Q-)(&—1),  fu=(-2)/(+1)

2+ f,)(f,z -1) 7= 25,3 ”j1(2 - 61) V;=nest NoiHig — Rop Py — Ro3Hj>
(3.3)

and reconstruct the other parameters n,=7#;n,,,y,=7,n,, from the five
parameters y;,n,, i=1,2,3. However, we only have four arbitrary

parameters, chosen to be
E, ne>0, i=1,23 (3.4)

but (3.2) written with the intermediate parameters 7,7y, + 7,375, =
R4+, allows one to obtain &, from &;. We obtain two classes of
solutions [see (B.5)] and choose the simplest one,

¢i1+¢,=0

Let us choose for the j=1 component the classI of Section?2 with
1< ¢, <2 and a negative shock velocity; then the j=2 component is of
class II, —2 <&, < —1 with a positive shock velocity.

All Section 2 results concerning stability, sound wave velocity, and
subsonic and supersonic inequalities are valid for the two components.

3.2. Positive (1+1)-Dimensional Solutions

If at initial time or at finite time, the asymptotic limits |x] — oo are
positive, then we can find"? constraints on the d; so that positivity holds
for all x, # values. However, depending upon whether 7,7, <0, we find two
sets of limits which must be positive:

N172<0-Zy=no+n;>0,  i=1,.,4, j=1,2
(3.6)
V172> 0 =1, >0, Q;=ng;+ny;+ny>0

We must find, in each case, subdomains of the arbitrary parameter
space for which the two conditions on y;y, and on the shock limits are
satisfied. In Appendix B we determine two classes of positive densities
corresponding to the two cases 7,7, S0 (Theorems 1 and 2). Here, for
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simplicity, we briefly report the result for the case y,;y,<0,2;>0. As
mentioned above, we choose 1 <&, <2, &, = —£, and, applying the results
of Section 2, the X; are positive if ny,, {;, and —¢; satisfy the constraints
written down in (A.8a):

if Ap=02-8)/(2+¢) <ng/ng <1/A;

_ _ (3.7)
and if  ngs/ng  >A3=(2—-¢)/(1—¢) > 2,>0
In Lemma 7 of Appendix B we find two possible conditions for y,y, <0.
Let us define

X=(ng,—npi i)/ (ng — Repfipy), Z=3+4(1-&%) ng(4—¢%)
Then y,7, <0 in the two cases

(1) l<ng/mg<li, Z<-X or —1/X<Z<0 (3.8a)
(il) Ap<hAgphy<l, Z<—-1/X or —-X<Z<0 (3.8b)

If the arbitrary parameters satisfy either (3.7), (3.8a) or (3.7), (3.8b), then
7172 <0, 2;>0, and the densities N, are positive.

3.3. Macroscopic Quantities

For the jth similarity components we define the mass .4 =
my+m;/D;, momentum ¢ = j,+ j,/D;, energy & =¢&,+ é;/D;, temperature
Je,=2&/M— (] 4), and the associated limits when #n,—» —oco or
D~ 1: M;=my+m;, J;=jo+ j;, E;=&,+&, Te,=2E,/M;— (J,/M;)*. For
the (1 + 1)-dimensional solutions we define the mass .# =my+3 m;/D;,
momentum ¢ = j,+ 3 j;/D;, energy & =8&,+3 ¢;/D;, and temperature
Fe=28/M — (F]M)". For the &, + &, =0, y,7, <0 classes of solutions, the
two limits when |x| — co are just the previous M; and Te;.

3.4. Numerical Calculations

In Fig. 2a, for &, =19, ny, =1, 1y, =23.4, ny; =9.1, we present the two
similarity shock wave components with a variable # which is either x — ¢
for the first component, x — &,¢t=x+ &, ¢ for the second one, or x at =0
for both. We normalize mass and temperature by their ratios to the highest
values M, =m,+m, and Te,. We see that the two shocks are compressive,
traveling in opposite direction (arrays), and we observe an overshoot of the
temperature for the first component. Figure 2b represents the (1-+1)-
dimensional collision or superposition of the two previous shock waves.
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We still normalize mass and temperature by the highest asymptotic values
M, Te,. We observe a bump for the temperature at initial time or at small
time values. Due to y,7y,<0, &&= —¢2<0 and the present choice
7;6,>0, the two exponentials (exp —y;#,t) decrease when ¢ increases,
D;— 1, and the equilibrium Maxwellian becomes m,+ m, + m, = M, for

Similarity waves of the
(a) (1+1) - dimensional shock wave
Eq=19  ngp=234  ngg=941
Ep=-19
Te,(n)/Te,
—< 1+
Hqni/M
! ’\ Te, )/ Te,
H,in/M \ .
VM e
-0.2 0 0.1 0.25
(b) (141} - dimensional shock wave
§1 =19 Ngp = 23.4 Ng3 = 9.1
2
e 21.102 E,=-19
M= 7110 ¥p=-27
Te,=0.52 M, =555
Telxt=051/Te, '¢2=03
/A I 3\
/ Mixt=05/M, !
._._.__.\1 it B
\. Telx,t=0)/Te, \k _____
0.5 \
\. HMixt=0/My ‘_____
1 S E— [ X
-1 0 1 2

Fig. 2. Results for (1 + 1)-dimensional shock waves. (a) The two similarity components with
¢ = 419 correspond to compressive shocks and we see a temperature overshoot for one com-
ponent. (b) Collision or superposition of the two components. The temperature overshoot
present at t=0 decreases and spreads out when ¢ is growing. The Maxwellian equilibrium
state appears and we see the moving of the shock.

822/61/3-4-13
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the mass and 2(e+Y e)/Mo— (jo+ 2 j:)?/M; for the temperature.
Contrary to the similarity shock waves, the (14 1)-dimensional profiles
change with the time. The bump decreases and for sufficiently large time
the Maxwellian equilibrium state appears and spreads out. We also observe
the moving of the shock.

APPENDIX A. EXPONENTIAL-TYPE SIMILARITY SHOCK
WAVES

We seek exponential-type similarity waves with the variable n = x — &¢
bounded on the # axis and recall a previous proof®'¥. From the linear
equations (1.1) we see that all 9, N, are proportional We can write
N;=ng;+n;/D(n) and get a Ricatti equation:

aD,+ay+a,D+a,D*=0
Ao =HNyHi3— R, 1y
@y =Nphs+ RozHy — Ng Hg— Noghy
a4z =Ny Ro3 — Hoi Moa
a=n(2—8)= —ny(1+&)=ny(2+ ) =ny(¢ 1)

(i) If a,=0, the solution is a constant plus an exponential
D= —ay/a; +dexp(—aynja); (i) if a,#0, putting D=(a/a,)0,logE,
then E is a sum of two exponentials, exp(d,n7). If 1,#1,, we find
D™ '=ci+c,/[1 +exp(Ay—A,)n] If 1, =4,= —a,/2a, the two independ-
ent solutions are exp A, n exp Ay, leading to power-type solutions for D,
which are excluded.

We determine the similarity solutions

N;=ny+n,/D, D=1+de", n=x—¢t, d=1 (A1)

of the nonlinear system (1.1) with /;= 8, + a, ¢, and study the properties of
the macroscopic quantities: mass .4, momentum ¢, velocity % = ¢/.4,
shock velocity ¥ =% —¢, sound waves  # =% —¢&,,,, temperature
Te=2&/M —U° local entropy # =Y N,logN;, and shock entropy
=2 (—C+a)N:logN,.

A.1. Algebraic Determination
The 10 parameters ny,, 15, y, £ satisfy six independent relations,

i (2—=8)= (1 + &) =ny2+ &) =nsy(E—1)=nyns;—nyny

=Ng1 g+ RosPty — Roy M3 — Ro3iy (A.2)
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and the relation for the Maxwellians Ma,, Ma, defined by the n, and
So; = Ho; +1;
Rg2Mo3 = Moy Roa, S02503 = So1504 (A.3)
We choose for the four arbitrary parameters
¢, ne>0, i=1,2,3-5ny4>0 (A4)
We introduce intermediate ¢-dependent parameters deduced from (A.2),
iy =nyfny = (2= E)/(2+¢&)
Ay=mn3/n;=(2-E)E—1)
Aa=ny/ny=(E—2)/({+1)
y=y/m=28/2+ )&~ 1) (A.5)
obtain »; as a function of the four arbitrary parameters,
11(2—=&) 7= ngifig + Ros — Nop iy — N3 Ty (A.6)

and reconstruct the original parameters n,=7a,n,, y=jn,.

A.2. Invariance Properties with the Transforms 7, 7,

(i) F:&- =& y—> —y, n,—>n,y, By;— Ay, i=1 and 3. The
relations (A.2), (A.3) are invariant by 7, and consequently we can study the
& > 0 solutions and deduce the & <0 ones. We note

TIN(x,t)=N,, (—x,1), i=13

M(x, ty=M(—x, 1)

T F(x,1)=—F(—x,1)
T1E=E(—x,1)

T 9e(x,t)=Te(—x, t)

g N

(1) Fing > so, n;—>s,=-—n, vy —y, &€& Then I,N,=
oy +n;—n/(1+e "y=N,, 7,4 =M, and the densities are invariant. We
define for the Maxwellians

Mo =no; +ngy + 2(ngs + nos)
M =561+ 502+ 2(S503 + S04)
M=n,+n,+2(n;+n,)
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and get S,My=M,=M,+ M. For the solutions .# =M,+ M/D with
M >0, applying 7,, we deduce those with M <0, interchanging the
Maxwellians.

A.3. Study of N,>0 or ny,; > sy, >0

We have from (A.4) ng;>0 and for sy, =ny+n,7; we apply (A.5),
A.6), _ _
(4.8) So1 = A(Roa/No; — 3} (g3 — Fizngy )
S0z = iy A(Nga /Moy — i) (o3 — oy 4 /1l)
So3 = fiz A(ng/noy — Ayffi3) (o3 — fisngy )
A= (& -1)2¢n,
and recall that so, =543502/50;- For [&]>2 we get n1,<0, 71;<0, 4 <0,
501 <0, whence only |£| <2 can lead to N,> 0. Starting with 1 <& <2 and
0 < &< 1 we respectively find 7, >0, 7i; >0, 4A>0, i, <0 and 71, >0, 15 <0,
A <0, iy <0. For the N, >0 we get two classes of &> 0 solutions and with
., deduce the & <0 ones:

(A7)

Class I 1<&<2, ngfng >y, Hes/hg >3
Class IT —2<b< =1, ng/ng <My, NgsfHg > Fs/h,
{A.8a)
Class I11 0<é<l, Aynys<ng/ng <h,<l
Class IV —1<&<0, 1<ay<ng/ng <fafi;

For instance, applying 7, to class I, we find
l< (<2
Roi/Mor > (2+¢)/(2— &) =1/n,
Hoa/Flog = Hos/Ro1 > —(2 + EY(E+ 1) =r4/n,

which defines class II. For a given Ma, we can rewrite the ¢ intervals
(A.8a) leading to N,>0. Either ng,/ny >1 or <1, which excludes either
class III or IV, and only three different & intervals can exist. We define a, b
and find
a(ne;) = (o3 + 2nq; )/ (o3 + 1161) > 1
b(ng;) = (no1 — ngp)/(no1 + noz)
Class I sup(a(ny,), 2b(ng)} < &< 2
Class 11 —2<¢é<inf(—a, 2b)
) (A.8b)
Class 111 Roy ZRo, 0<b<ELini(1, 25)

ClassIV  ng,=nq,, sup(—1,26)<E<b<0
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For a given Ma,, applying 7, to (A.8b), we obtain, for the same &, similar
intervals with s,; instead of ng;:

Class I sup{a(sq;), 2b(s;) } <& <2

(A.8¢)
Class 11 —2 < é<inf(—a, 2b)...

From s, we define a ¢ cubic polynomial # (¢, ngy,..., Hos) With ng;-
dependent coefficients,

A&, no) =, 28(8 —2) = (2+ ENE® — 1) (o4 + oy iy — Ny iy — o3 Tis)
A&~ =& ny) = —AL(E no = nois 1), i=land3 (A9)
and determine for the ¢ limits of the intervals 6f (A.8b) the corresponding
A, (£) signs,

A(—2)= —12np3<0->#,(2)>0
Al)= —6ngp<0—-74,(~1)>0
fiy(a(ng)) =2ngne3a/ (B3 +101) >0 > A, (—a) <0
A,(2b) = 16ng, 1y b/ (ng; +192) 20 if ng Zng,
Af(—2b)s0 if ny Sngy
Ay(b) = —4ngsnpb/(ne; + 1) SO

if ng2np-a(—-b)s0 if ny,Sng, (A8d)

Similarly, for the s, parameters let us define a ¢ cubic polynomial
with 5o, = no; + 1,7, coefficients and which satisfies an important relation
with 7,

§1(& so)=(2+E)(E— 1)(S04 + So1 s — S02713 — Soaf12) = —#1(E, o) (A.10)

However, applying the 7, transform to (A.8d), we find the same signs for
the & limits of the (A.8c) intervals,

§1(f= —2)= —12S03 <0
§1(2)>0, §,(1)<0, §(—1)>0, §i(a(se;)) >0  (A8e)

§i(—a)<0, §1(b)s0 if 5oy 2 5005

A.4. Weak Shocks Associated to Ma, and Ma,

Let us define ,, the characteristic velocities associated to Ma,, corre-
sponding to n;=0 or A,(&,) =0. From (A.9) three &, roots exist. From the
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A,(€) signs given by (A.8d) it follows that one &, root is in the (A.8b) inter-
val defined for class T for £, another in the interval defined by class II
for &, while the last &, root is either in the ¢ class III or the & class IV,
depending upon whether ny, 2 ng,.

Another way to find the characteristic values &4, &, is to apply the
Lax-Whitham theory? (see Gratignol®™'" for the 6V, model). We
linearize (1.1) around M, with ng(1 + Z,(x, t)) and keep terms linear in Z,:

ol Zy=ngylyZy= —ngply Zy = —nos s Zy=npyngs(Z,+ 23— Z, — Zy)

We obtain 4Z=0 with 4 a matrix differential operator and Z a column
vector with elements Z,,.., Z,. The determinant of A is the sum of a
fourth-order differential operator (6%—482%:)(0%—0%) plus a third-order
one
(532 - 4592;2)[”01(51 +0,) +1e(0,~0,)]
+ (632 —~ 0%)[103(8, 4 20,) + noa(8,~20,)]

Applying these operators to a (x — £f)-dependent function, we find the
roots ¢ = +1, +2 for the fourth-order operator and the cubic ¢ polynomial
7, [see (A.9)] for the third-order one. The three 7i, =0 roots belong to the
three intervals (—2, —1), (—1, 1), (1, 2) with end points given by the roots
of the fourth-order operator.

For the characteristic value £, of the other Maxwellian Ma, with

§1(¢;)=0 we deduce from (A.8c), (A.8¢), and (A.10) that one root is in
class I1I or IV, depending upon whether sq; 2 s,.

A.b5. Velocity and Shock Velocity

For the mass .# =M,+ M/D, momentum ¢ =J,+J/D, velocity
U= F#]M, and shock velocity ¥ =% — ¢ we associate for Ma,

My=(ngy +ngy)(1+2ng3/ng,) >0
Jo=2(no1 — ngx)(1 + ng3/ng,)
Uy=Jo/M,
M Vo=Jd,— My&
=2[nos(1 = &) — noo(1 + &) N3/, — Ais)
2730 (1 = &) —ne(1+ &)= (24 &) ng;— (2= &) ng,
T Vo= —Vo, iy =1, (A.11)
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For class I with ny, > 7, we find V<0, while for class III we distinguish
between ny; 2 ng; i;. For the other classes we apply ;:

Class1 V<0, Class I V>0, ClassIlI V,20

if ngy 2 fiyng, and the converse for Class IV (A.8f)

For Ma, we associate M, =M ,+M>0, J . =Jy+J, U,=M}/J,
V,=U,— ¢ linked to Ma, with the mass conservation law

MV.=M,V, or J=(M->V,V,>0 (A.12)

so that V/, has the V, sign provided by (A.8f).
From D=1+ ¢", the determination when |f| — co of the upstream
and downstream needs knowledge of the y sign,

EM[6=y=1,/(E~4)(&*~1)

(A.13)
E(2— &) M6 = (nos/no, ) (noy — fizngy) + figfisng,
Due to M¢&y>0 we get, for £ fixed, two possibilities M >0 called A4 for
M >0 and B for M <0. From the two possible ¢ classes, the two V,, signs
for classes III and IV and the M 20 signs we should have 12 subclasses.
However, 7, 7, with, respectively, (£ & —¢ and My M, or M>0«
M <0 allow us to study only three subclasses.

ClassIA: 1<&<2, M>0y>0, Vy<0, up n=cw Ma,, down
n= —o Ma,, My< M, compressive shock.

Class IITIA: O0<é<1, M>0, y>0, =00 Ma,, 1= —o0 Ma,; Vy<0
if ng>dsny, up Ma,, down Ma,, compressive shock; V,>0 if
Hoz <fizhyy, Up Ma,, down Ma,, rarefactive shock.

Classes I and III:

M>0 i nos/ng > (A3ng, +igng )/ (ney — fiahg) (A.8g)

A.6. Sound Velocity

For Ma,, Ma, we define the sound velocities Wy=U,—¢&,=
Vo+E&—¢Ey, Wo=U,— ¢, and, comparing with V,,, V,, we verify that the
supersonic and subsonic flow inequalities are satisfied.

Lemma 1. Class IA: up |Wy| <|V,l, down |V, | <|W,|, &, <E<E,.
We recall: 1 <¢é<2, M>0-74,()<0 from (A.13) - §,,(¢) >0 from
(A.10), A4(2)<0, A(1)>0, §,,(2)<0, 55;(1)>0 from (A.8d) (A.8c).
Further, £, £, and £, &, belong to the same intervals (A.8c) with only one
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A(Ey)=0=25,,(&,) root. Consequently, {y<¢é< &, and from V<0,
W.=V.+E-E <V, <0 we get the subsonic inequality |W, >V | If
Moy > Hop, then 2b(ng;) <0< &, and if my <ng,, A (2b(ny)=E)>0 from
(A8a) and still 2b<¢ or mg>,(E=E&)). We use this result in
WoMy=Jo— &M,

Jo—EoMo=n0(2—Eg) —npa(2 + &o) + 2(n03/no1 1o (1 — o) —Roa(1 +&o) ]
(A.14)

We get Wy<0 and from V,<0, Wy—Vy=E&—£,>0 the supersonic
inequality | Wy} < |Vl

Lemma 2. Class IIIB and V,>0: up Vo> Wy>0, down W, >
V>0, {<f<.

We recall M <0-74,(£)<0 (A.13)>5,,(E)>0 ny >ng, (A8b)—
b(ny)>0—-A,(b)>0 7A;(1)>0, §,(1)>0 (A8d), (A8e), & &; and &, &,
belong to the same intervals with one £, and ¢, root. Consequently,
E.<l<ly and W, =V +E—E,>V, >0 is the subsonic inequality.
Further, from (A.8d), 7A,(b{(ny) <0, ng<ng — b(ny)>E,, or
Roy <Hgr(1—&o)/(1 +&,). Substituting into (A.14), we get W,>0,
Vo=£Eq—E+ Wo> W, or the supersonic inequality.

Lemma 3. Class IIIB and V,<0: up —Wy,>—-V,, down
—V.>—-W,.

From M <0 and Lemma 2 we still have ¢, <¢<&; and deduce
—Wo= —Vo+E—Ey> —V, for the subsonic inequality. From #,(£) <0
and (A.9) we find n,(£)>0 and

So2 = So1 — Noa +noy =ny(A,— 1) = —2ln ng /(2 +€) <0

Consequently, sq, < o1, §1(b(s5¢;)) <0 from (ABe) or b(s,) > &, or
Sor < S (1 — &)/ (1 +£&,). We write down an expression similar to (A.14) for
W, M, and substitute the inequality

W M,=50(2—¢&,) = 502(2+ &) + 2(503/501 ) [501(1 — &) — 502(1 + £,)1 <0

Finally, —V,= —W + &—¢&,> — W, which is the supersonic inequality.

A.7. Energy and Temperature

We introduce the energy & =2(N,+ N,)+ N;+ N, and apply the
momentum conservation J, +2&, =0,
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& = Ey+ E/D(n), Ey= (ng; +ngx)(1 + 2ng3/nq;)

A.l5
an(_éf“f'zg):o—)2E=,§J__.,2EM___J2 ( )

Then, taking into account the last relation (A.15) in the temperature
Te=28/M — (f]4)?, the term D~? in the numerator disappears:

Fe = (Ng+ N D)/ (My+ M/D)?, N =2EM+EMy—JJy)=2MC
M= 2E0M0_J% = 2(ng, + 103)” Moy /Mor + 16n0162(1 + 1g3 /g, )* >0
2C=2E,+E*My—2¢ 4, 7
=noa[ (€ +2)" + 2n03(¢ + 1) /noy ] + 1oy (€ —2)° + 2n03(£ = 1) >0
(A.16)

To the Maxwellians Ma, and Ma, we associate, when |f|— oo, the
temperatures Je, and Je,:

(Feo— Te;) MoM2[No=M[m+2(1—1/u)] (A17)
w=M,C/N>0, m=M/M,

and m has the M sign. For compressive or rarefactive shocks the mass
increases or decreases across the shock. For class I1I, 0 < ¢ < 1, we study
the property that both .# and e are increasing or decreasing together.

Lemma 4. For class I with compressive shock, mass and tem-
perature cannot both increase across the shock.

We choose class IIIA with M >0 or M,<M, and prove that
Je, < Je, is not possible. For class III, due to ny, <ng and (A.11), we have
Fo=UM,>0 and

Eq—E*M /2= (no; + nop)[2 — EY2 4+ (1 = E2) ngs/ng; 1 >0 (A.18)

Fey < Fe,, M >0 lead to m>0, m<2(1 — pu)/u, requiring u <1
(H—1)C=(Eq— E2M)2)~ Uy Vo M, (A.19)
From (A.18) the first term is positive and also the second one because from

(A.8g), V(<0 for compressive shock. It follows that u <1 is not possible.
For class ITIB with M <0 we use the transform .7,.
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Lemma 5. For class III with rarefactive shock, mass and tem-
perature cannot both decrease across the shock for £2 < 4/5. For class III,
due to yM>0, if M>0, then y>0 and M,=lim,  , .#>M,=
lim, , , #; while if M <O, then y<0 and My=lim, , . 4> =
lim, , ., #. Consequently, for rarefactive shocks V>0 and the last
term of (A.19), —J,V,, gives a negative contribution. Still assuming
M>0, we must have p<1 and a negative rhs in (A.19). Applying
(1 =8)/(1+ &) <ngy/ng <h, and

&/2 < (ngy — ngy)/(noy + ney) <&
1 <2(ng; +no3)/(14 2153y <2 - E2 < Uy < 28
VoMo =2(nos/no1)[n01(1 — &) — noa(1 + &) T+ 161 (2 — &) —nea(2 + €)
> (u—1)YC>ng(1 — &)+ ng(1 + &)
+ 1p(2 +4E +3E%/2) + 1y (2 — 4E + 3E%/2) (A.20)

with a negative n,, term for ¢ > 2/3. Still using the lower bound for ng,/n,,
we get that u< 1 or Je, < Je, is not possible for £? < 4/5,

(U—1)C>2mpy(1 — &)+ ng (4 —5ED)/(1+&)>0  for £2<4/5 (A2l)

A.8. Overshoot of the Temperature

Neglecting ¢ in the temperature, then Je - 7 e =26/.4 and 8,7 e =
24D *(D—1)y(ME,— EM,) has a constant sign. Je is a monotonic
é-dependent function. Adding —%?, then Ze can be nonmonotonic. A
criterion for an overshoot of Je is

Te(n=0)= (AN + N/2)/(My+ M/2)* > sup Je,, Te, (A.22)

M
Restricting our study to the solutions M2 M, > Je, 2 Je,, the criterion
becomes
Class A M>0, Je,<Te,<Te(0)

(A.23)
Class B Te, < Te, < Te(0)
In addition to the sign of Je,— Ze,, provided by (A.17), we find
[Ze(0) — Teq] Mo(Mo+ M/2)*/ N,
=M(-m/4—1+1/u)
(A.24)

[7e(0) — Te, J[ Mo+ M)(My+ M/2)1*/ Ao M,
=M[3m/4+ 1+ (m*2—1)/u]
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so that the conditions for the overshoot become

Class A M>0, —=3u/4+3[9p%*/4—-8(u—1)1""
<m<2(1—p)u, u<t (A.25)
Class B M<0, 2<-—mpu/(u—1)<4, u>1

A.9. Entropies

We define the shock entropy #, and the local entropy #:
J{j=z(—£+a,-)Nl-logN,-—>6,7]{1:(N2N3—N1N4)log(N1N4/N2N3)<O
H =) N,logN,»3,#+0,3 a;N,log N,;=H,, <0

#, is a {-monotonic decreasing function, #(n = —c0) > #(n = o), while
A is not necessarily monotonic.

APPENDIX B. (1+1)-DIMENSIONAL SHOCK WAVES

We study the (1+ !)-dimensional solutions which are sums of two
similarity waves

2

Ny=ng+Y ny/D,,  Dy=1+de", n=x—¢t, d;>0 (B.l)
1

B.1. Algebraic Determination

The 16 parameters ny, n; 7;, &, satisfy 12 relations, leaving 4

arbitrary parameters. First we have the (A.3a), (A.3b) similarity wave
relations

anjl(z - 51) = "“anj4(1 + 51) = jzyj(z + é;) =nj3yj(éj_ 1)
=Rjalys =Ny N = oy B+ Rog iy — Hop M3 — Rz iy (B.2a)
o4 = Rop M3 /Moy
and an additional relation for the sum to be a solution,

RiaNy3 +Ry3lpy =Ny Aoy + Higlyy (B.2b)
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We still introduce &;-dependent intermediate parameters 72; = n,,/n;,, 7,/n;,
and obtain 7, :

p=02-C)/2+&), A=02-&)/NE—1),  au=(—-2)/({+1)
2fj= 371‘(2 + 51)(512 —1), njl(z - f;) 7;=Ho1M;4+ Hog — Ry A3 — Rz,
(B.3)

However, the additional relation 77,3 + fiy3 /o, = fiay + 7114 shows that the
two ¢, cannot be arbitrary. We choose the four arbitrary parameters

&, nme>0, i=1,2,3 (B.4)

and determine &, from &,. Putting P=¢£,¢&,, S=¢&, + &, into the additional
relation, we find two possible solutions for &,:

S=0 or ¢ +&,=0 and P*+4—13P+25%=0 (B.5)

We restrict the study to &, = —¢,, which means that if £, is in class [
or IIT of similarity solutions, then &, is respectively in class I or IV. Then
we can construct all nonarbitrary parameters: first n;; and then n,, y;,
using (B.3).

B.2. Positive NV, for §,+§,=0

If at ¢ finite the N, limits |x| — oo are positive, then’®) with the d; in
D; we can have N;>0Vx. Depending on whether y,y,2 0, we have two
sets of conditions for the limits

Y172<0: 2y=ng+n,;>0 (B6)
1172>0: 1y >0, Q,=ny+n;+n,;>0
For the y,y, we have the relation y,y, =n,,/ny; A1, OF
— =X X+Z2)(X '+ Z)
X =(ng, —no1fiyy)/(noy — Ho2fiyy) (B.7)
Z=3+4[(1-E/(4— &) nes/no
B.2.1. Positivity in the Case y,y,<0

Lemma 6. If 1<&,<2, A, <ngfhg <1/fiyy, ngs/ng>7y3, then
2;>0and X>0. Now &, and &, = —¢{,; belong, respectively, to classes I,
IT of Appendix A and from (A.8a) we have, for 2;>0, i1, <ng/ng <
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flay = 1/ii )5, RosfNgy > Fys, and nyy/ng, > fiay/fi, =75, In X written down in
{B.7), both numerator and denominator are positive.

Lemma 7. If 1 <¢, <2, then y,7,<0 in both cases

L <ng,/ng < 1/i,, Z< -X<0 or —1/X<Z<0 (BS8a)
ﬁ12<7l02/n01<1, < _I/X or —-X<Z<0 (ng)

First, from Lemma6, X>0 in both cases. Second, from (B.7) and
A,=02—&)/(2+¢&,) <1 we see that X =1 if ng, 2 ny,. Third, from (B.7),
117.<0if Z¢[—X, —1/X].

As an application of Lemmas and 7, we obtain two classes of N,>0
satisfying both 2';>0 and y,y, <0; for instance, with (B.8a).

Theorem 1a. If 1 <&, <2, 1 <ngyfng <(2+E)/(2—E)), ngs/ho; >
sup{(2—¢&,)/(1—¢&,), (4=L1)(B+X)/4(E1—1)}, X defined in (B.7), then
N,;>0.

Another Theorem 1b can be obtained from (B.8b).

B.2.2. Positivity in the Case y,y,>0. We obtain from the Q,
of (B.6)
sz (n03_ 12An01)/4A
A=(4—-E2/16(62—1
( /16(&7—1) (B9)
94 = 3”03 - 32An01
Qino; =Q;, 1nga, i=1,3

Lemma 8. Q,>0 if 1<&,<2, and ngs/ng, > 124=3(4-E*)/4(E2-1).

Recalling that for 1 < ¢, <2, depending upon whether 1 <ng,/ng <
1/fi}; O Hiyy <ngy/ng <1, then either X>1 or 0 < X < 1, and that y,7y,>0
if Z belongs to the interval —X, —1/X we get the following result.

Theorem 2. If 1 <&, <2, ng/ng, > 3(4 — E2)/4(52 — 1), and if either

- 1 42-1)
1 <ngy/ng < 1/a;,, 3+X )<n03/nOITéz~<3+X
or
_ 4(e2—1
v < Moy/noy <1, (3+X)<n03/n01%§22<3+1¥—1

then we have both Q,>0, y,y,>0 and N,>0.
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